kube-controller-manager源码分析(三)之 Informer机制
以下代码分析基于
kubernetes v1.12.0
版本。
本文主要分析k8s中各个核心组件经常使用到的Informer
机制(即List-Watch)。该部分的代码主要位于client-go
这个第三方包中。
此部分的逻辑主要位于/vendor/k8s.io/client-go/tools/cache
包中,代码目录结构如下:
cache
├── controller.go # 包含:Config、Run、processLoop、NewInformer、NewIndexerInformer
├── delta_fifo.go # 包含:NewDeltaFIFO、DeltaFIFO、AddIfNotPresent
├── expiration_cache.go
├── expiration_cache_fakes.go
├── fake_custom_store.go
├── fifo.go # 包含:Queue、FIFO、NewFIFO
├── heap.go
├── index.go # 包含:Indexer、MetaNamespaceIndexFunc
├── listers.go
├── listwatch.go # 包含:ListerWatcher、ListWatch、List、Watch
├── mutation_cache.go
├── mutation_detector.go
├── reflector.go # 包含:Reflector、NewReflector、Run、ListAndWatch
├── reflector_metrics.go
├── shared_informer.go # 包含:NewSharedInformer、WaitForCacheSync、Run、HasSynced
├── store.go # 包含:Store、MetaNamespaceKeyFunc、SplitMetaNamespaceKey
├── testing
│ ├── fake_controller_source.go
├── thread_safe_store.go # 包含:ThreadSafeStore、threadSafeMap
├── undelta_store.go
0. 原理示意图
示意图1:
示意图2:
0.1. client-go组件
-
Reflector
:reflector用来watch特定的k8s API资源。具体的实现是通过ListAndWatch
的方法,watch可以是k8s内建的资源或者是自定义的资源。当reflector通过watch API接收到有关新资源实例存在的通知时,它使用相应的列表API获取新创建的对象,并将其放入watchHandler函数内的Delta Fifo队列中。 -
Informer
:informer从Delta Fifo队列中弹出对象。执行此操作的功能是processLoop。base controller的作用是保存对象以供以后检索,并调用我们的控制器将对象传递给它。 -
Indexer
:索引器提供对象的索引功能。典型的索引用例是基于对象标签创建索引。 Indexer可以根据多个索引函数维护索引。Indexer使用线程安全的数据存储来存储对象及其键。 在Store中定义了一个名为MetaNamespaceKeyFunc
的默认函数,该函数生成对象的键作为该对象的<namespace> / <name>
组合。
0.2. 自定义controller组件
-
Informer reference
:指的是Informer实例的引用,定义如何使用自定义资源对象。 自定义控制器代码需要创建对应的Informer。 -
Indexer reference
: 自定义控制器对Indexer实例的引用。自定义控制器需要创建对应的Indexser。
client-go中提供
NewIndexerInformer
函数可以创建Informer 和 Indexer。
-
Resource Event Handlers
:资源事件回调函数,当它想要将对象传递给控制器时,它将被调用。 编写这些函数的典型模式是获取调度对象的key,并将该key排入工作队列以进行进一步处理。 -
Work queue
:任务队列。 编写资源事件处理程序函数以提取传递的对象的key并将其添加到任务队列。 -
Process Item
:处理任务队列中对象的函数, 这些函数通常使用Indexer引用或Listing包装器来重试与该key对应的对象。
1. sharedInformerFactory.Start
在controller-manager的Run函数部分调用了InformerFactory.Start的方法。
此部分代码位于/cmd/kube-controller-manager/app/controllermanager.go
// Run runs the KubeControllerManagerOptions. This should never exit.
func Run(c *config.CompletedConfig, stopCh <-chan struct{}) error {
...
controllerContext.InformerFactory.Start(controllerContext.Stop)
close(controllerContext.InformersStarted)
...
}
InformerFactory是一个SharedInformerFactory
的接口,接口定义如下:
此部分代码位于vendor/k8s.io/client-go/informers/internalinterfaces/factory_interfaces.go
// SharedInformerFactory a small interface to allow for adding an informer without an import cycle
type SharedInformerFactory interface {
Start(stopCh <-chan struct{})
InformerFor(obj runtime.Object, newFunc NewInformerFunc) cache.SharedIndexInformer
}
Start方法初始化各种类型的informer,并且每个类型起了个informer.Run的goroutine。
此部分代码位于vendor/k8s.io/client-go/informers/factory.go
// Start initializes all requested informers.
func (f *sharedInformerFactory) Start(stopCh <-chan struct{}) {
f.lock.Lock()
defer f.lock.Unlock()
for informerType, informer := range f.informers {
if !f.startedInformers[informerType] {
go informer.Run(stopCh)
f.startedInformers[informerType] = true
}
}
}
2. sharedIndexInformer.Run
此部分的代码位于/vendor/k8s.io/client-go/tools/cache/shared_informer.go
func (s *sharedIndexInformer) Run(stopCh <-chan struct{}) {
defer utilruntime.HandleCrash()
fifo := NewDeltaFIFO(MetaNamespaceKeyFunc, nil, s.indexer)
cfg := &Config{
Queue: fifo,
ListerWatcher: s.listerWatcher,
ObjectType: s.objectType,
FullResyncPeriod: s.resyncCheckPeriod,
RetryOnError: false,
ShouldResync: s.processor.shouldResync,
Process: s.HandleDeltas,
}
func() {
s.startedLock.Lock()
defer s.startedLock.Unlock()
s.controller = New(cfg)
s.controller.(*controller).clock = s.clock
s.started = true
}()
// Separate stop channel because Processor should be stopped strictly after controller
processorStopCh := make(chan struct{})
var wg wait.Group
defer wg.Wait() // Wait for Processor to stop
defer close(processorStopCh) // Tell Processor to stop
wg.StartWithChannel(processorStopCh, s.cacheMutationDetector.Run)
wg.StartWithChannel(processorStopCh, s.processor.run)
defer func() {
s.startedLock.Lock()
defer s.startedLock.Unlock()
s.stopped = true // Don't want any new listeners
}()
s.controller.Run(stopCh)
}
2.1. NewDeltaFIFO
DeltaFIFO是一个对象变化的存储队列,依据先进先出的原则,process的函数接收该队列的Pop方法的输出对象来处理相关功能。
fifo := NewDeltaFIFO(MetaNamespaceKeyFunc, nil, s.indexer)
2.2. Config
构造controller的配置文件,构造process,即HandleDeltas,该函数为后面使用到的process函数。
cfg := &Config{
Queue: fifo,
ListerWatcher: s.listerWatcher,
ObjectType: s.objectType,
FullResyncPeriod: s.resyncCheckPeriod,
RetryOnError: false,
ShouldResync: s.processor.shouldResync,
Process: s.HandleDeltas,
}
2.3. controller
调用New(cfg),构建sharedIndexInformer的controller。
func() {
s.startedLock.Lock()
defer s.startedLock.Unlock()
s.controller = New(cfg)
s.controller.(*controller).clock = s.clock
s.started = true
}()
2.4. cacheMutationDetector.Run
调用s.cacheMutationDetector.Run,检查缓存对象是否变化。
wg.StartWithChannel(processorStopCh, s.cacheMutationDetector.Run)
defaultCacheMutationDetector.Run
func (d *defaultCacheMutationDetector) Run(stopCh <-chan struct{}) {
// we DON'T want protection from panics. If we're running this code, we want to die
for {
d.CompareObjects()
select {
case <-stopCh:
return
case <-time.After(d.period):
}
}
}
CompareObjects
func (d *defaultCacheMutationDetector) CompareObjects() {
d.lock.Lock()
defer d.lock.Unlock()
altered := false
for i, obj := range d.cachedObjs {
if !reflect.DeepEqual(obj.cached, obj.copied) {
fmt.Printf("CACHE %s[%d] ALTERED!\n%v\n", d.name, i, diff.ObjectDiff(obj.cached, obj.copied))
altered = true
}
}
if altered {
msg := fmt.Sprintf("cache %s modified", d.name)
if d.failureFunc != nil {
d.failureFunc(msg)
return
}
panic(msg)
}
}
2.5. processor.run
调用s.processor.run,将调用sharedProcessor.run,会调用Listener.run和Listener.pop,执行处理queue的函数。
wg.StartWithChannel(processorStopCh, s.processor.run)
sharedProcessor.Run
func (p *sharedProcessor) run(stopCh <-chan struct{}) {
func() {
p.listenersLock.RLock()
defer p.listenersLock.RUnlock()
for _, listener := range p.listeners {
p.wg.Start(listener.run)
p.wg.Start(listener.pop)
}
}()
<-stopCh
p.listenersLock.RLock()
defer p.listenersLock.RUnlock()
for _, listener := range p.listeners {
close(listener.addCh) // Tell .pop() to stop. .pop() will tell .run() to stop
}
p.wg.Wait() // Wait for all .pop() and .run() to stop
}
该部分逻辑待后面分析。
2.6. controller.Run
调用s.controller.Run,构建Reflector,进行对etcd的缓存
defer func() {
s.startedLock.Lock()
defer s.startedLock.Unlock()
s.stopped = true // Don't want any new listeners
}()
s.controller.Run(stopCh)
controller.Run
此部分代码位于/vendor/k8s.io/client-go/tools/cache/controller.go
// Run begins processing items, and will continue until a value is sent down stopCh.
// It's an error to call Run more than once.
// Run blocks; call via go.
func (c *controller) Run(stopCh <-chan struct{}) {
defer utilruntime.HandleCrash()
go func() {
<-stopCh
c.config.Queue.Close()
}()
r := NewReflector(
c.config.ListerWatcher,
c.config.ObjectType,
c.config.Queue,
c.config.FullResyncPeriod,
)
r.ShouldResync = c.config.ShouldResync
r.clock = c.clock
c.reflectorMutex.Lock()
c.reflector = r
c.reflectorMutex.Unlock()
var wg wait.Group
defer wg.Wait()
wg.StartWithChannel(stopCh, r.Run)
wait.Until(c.processLoop, time.Second, stopCh)
}
核心代码:
// 构建Reflector
r := NewReflector(
c.config.ListerWatcher,
c.config.ObjectType,
c.config.Queue,
c.config.FullResyncPeriod,
)
// 运行Reflector
wg.StartWithChannel(stopCh, r.Run)
// 执行processLoop
wait.Until(c.processLoop, time.Second, stopCh)
3. Reflector
3.1. Reflector
Reflector
的主要作用是watch指定的k8s资源,并将变化同步到本地是store
中。Reflector
只会放置指定的expectedType
类型的资源到store
中,除非expectedType
为nil。如果resyncPeriod
不为零,那么Reflector
为以resyncPeriod
为周期定期执行list的操作,这样就可以使用Reflector
来定期处理所有的对象,也可以逐步处理变化的对象。
常用属性说明:
- expectedType:期望放入缓存store的资源类型。
- store:watch的资源对应的本地缓存。
- listerWatcher:list和watch的接口。
- period:watch的周期,默认为1秒。
- resyncPeriod:resync的周期,当非零的时候,会按该周期执行list。
- lastSyncResourceVersion:最新一次看到的资源的版本号,主要在watch时候使用。
// Reflector watches a specified resource and causes all changes to be reflected in the given store.
type Reflector struct {
// name identifies this reflector. By default it will be a file:line if possible.
name string
// metrics tracks basic metric information about the reflector
metrics *reflectorMetrics
// The type of object we expect to place in the store.
expectedType reflect.Type
// The destination to sync up with the watch source
store Store
// listerWatcher is used to perform lists and watches.
listerWatcher ListerWatcher
// period controls timing between one watch ending and
// the beginning of the next one.
period time.Duration
resyncPeriod time.Duration
ShouldResync func() bool
// clock allows tests to manipulate time
clock clock.Clock
// lastSyncResourceVersion is the resource version token last
// observed when doing a sync with the underlying store
// it is thread safe, but not synchronized with the underlying store
lastSyncResourceVersion string
// lastSyncResourceVersionMutex guards read/write access to lastSyncResourceVersion
lastSyncResourceVersionMutex sync.RWMutex
}
3.2. NewReflector
NewReflector主要用来构建Reflector的结构体。
此部分的代码位于/vendor/k8s.io/client-go/tools/cache/reflector.go
// NewReflector creates a new Reflector object which will keep the given store up to
// date with the server's contents for the given resource. Reflector promises to
// only put things in the store that have the type of expectedType, unless expectedType
// is nil. If resyncPeriod is non-zero, then lists will be executed after every
// resyncPeriod, so that you can use reflectors to periodically process everything as
// well as incrementally processing the things that change.
func NewReflector(lw ListerWatcher, expectedType interface{}, store Store, resyncPeriod time.Duration) *Reflector {
return NewNamedReflector(getDefaultReflectorName(internalPackages...), lw, expectedType, store, resyncPeriod)
}
// reflectorDisambiguator is used to disambiguate started reflectors.
// initialized to an unstable value to ensure meaning isn't attributed to the suffix.
var reflectorDisambiguator = int64(time.Now().UnixNano() % 12345)
// NewNamedReflector same as NewReflector, but with a specified name for logging
func NewNamedReflector(name string, lw ListerWatcher, expectedType interface{}, store Store, resyncPeriod time.Duration) *Reflector {
reflectorSuffix := atomic.AddInt64(&reflectorDisambiguator, 1)
r := &Reflector{
name: name,
// we need this to be unique per process (some names are still the same)but obvious who it belongs to
metrics: newReflectorMetrics(makeValidPromethusMetricLabel(fmt.Sprintf("reflector_"+name+"_%d", reflectorSuffix))),
listerWatcher: lw,
store: store,
expectedType: reflect.TypeOf(expectedType),
period: time.Second,
resyncPeriod: resyncPeriod,
clock: &clock.RealClock{},
}
return r
}
3.3. Reflector.Run
Reflector.Run主要执行了ListAndWatch
的方法。
// Run starts a watch and handles watch events. Will restart the watch if it is closed.
// Run will exit when stopCh is closed.
func (r *Reflector) Run(stopCh <-chan struct{}) {
glog.V(3).Infof("Starting reflector %v (%s) from %s", r.expectedType, r.resyncPeriod, r.name)
wait.Until(func() {
if err := r.ListAndWatch(stopCh); err != nil {
utilruntime.HandleError(err)
}
}, r.period, stopCh)
}
3.4. ListAndWatch
ListAndWatch第一次会列出所有的对象,并获取资源对象的版本号,然后watch资源对象的版本号来查看是否有被变更。首先会将资源版本号设置为0,list()
可能会导致本地的缓存相对于etcd里面的内容存在延迟,Reflector
会通过watch
的方法将延迟的部分补充上,使得本地的缓存数据与etcd的数据保持一致。
3.4.1. List
// ListAndWatch first lists all items and get the resource version at the moment of call,
// and then use the resource version to watch.
// It returns error if ListAndWatch didn't even try to initialize watch.
func (r *Reflector) ListAndWatch(stopCh <-chan struct{}) error {
glog.V(3).Infof("Listing and watching %v from %s", r.expectedType, r.name)
var resourceVersion string
// Explicitly set "0" as resource version - it's fine for the List()
// to be served from cache and potentially be delayed relative to
// etcd contents. Reflector framework will catch up via Watch() eventually.
options := metav1.ListOptions{ResourceVersion: "0"}
r.metrics.numberOfLists.Inc()
start := r.clock.Now()
list, err := r.listerWatcher.List(options)
if err != nil {
return fmt.Errorf("%s: Failed to list %v: %v", r.name, r.expectedType, err)
}
r.metrics.listDuration.Observe(time.Since(start).Seconds())
listMetaInterface, err := meta.ListAccessor(list)
if err != nil {
return fmt.Errorf("%s: Unable to understand list result %#v: %v", r.name, list, err)
}
resourceVersion = listMetaInterface.GetResourceVersion()
items, err := meta.ExtractList(list)
if err != nil {
return fmt.Errorf("%s: Unable to understand list result %#v (%v)", r.name, list, err)
}
r.metrics.numberOfItemsInList.Observe(float64(len(items)))
if err := r.syncWith(items, resourceVersion); err != nil {
return fmt.Errorf("%s: Unable to sync list result: %v", r.name, err)
}
r.setLastSyncResourceVersion(resourceVersion)
...
}
首先将资源的版本号设置为0,然后调用listerWatcher.List(options)
,列出所有list的内容。
// 版本号设置为0
options := metav1.ListOptions{ResourceVersion: "0"}
// list接口
list, err := r.listerWatcher.List(options)
获取资源版本号,并将list的内容提取成对象列表。
// 获取版本号
resourceVersion = listMetaInterface.GetResourceVersion()
// 将list的内容提取成对象列表
items, err := meta.ExtractList(list)
将list中对象列表的内容和版本号存储到本地的缓存store中,并全量替换已有的store的内容。
err := r.syncWith(items, resourceVersion)
syncWith调用了store的Replace的方法来替换原来store中的数据。
// syncWith replaces the store's items with the given list.
func (r *Reflector) syncWith(items []runtime.Object, resourceVersion string) error {
found := make([]interface{}, 0, len(items))
for _, item := range items {
found = append(found, item)
}
return r.store.Replace(found, resourceVersion)
}
Store.Replace方法定义如下:
type Store interface {
...
// Replace will delete the contents of the store, using instead the
// given list. Store takes ownership of the list, you should not reference
// it after calling this function.
Replace([]interface{}, string) error
...
}
最后设置最新的资源版本号。
r.setLastSyncResourceVersion(resourceVersion)
setLastSyncResourceVersion:
func (r *Reflector) setLastSyncResourceVersion(v string) {
r.lastSyncResourceVersionMutex.Lock()
defer r.lastSyncResourceVersionMutex.Unlock()
r.lastSyncResourceVersion = v
rv, err := strconv.Atoi(v)
if err == nil {
r.metrics.lastResourceVersion.Set(float64(rv))
}
}
3.4.2. store.Resync
resyncerrc := make(chan error, 1)
cancelCh := make(chan struct{})
defer close(cancelCh)
go func() {
resyncCh, cleanup := r.resyncChan()
defer func() {
cleanup() // Call the last one written into cleanup
}()
for {
select {
case <-resyncCh:
case <-stopCh:
return
case <-cancelCh:
return
}
if r.ShouldResync == nil || r.ShouldResync() {
glog.V(4).Infof("%s: forcing resync", r.name)
if err := r.store.Resync(); err != nil {
resyncerrc <- err
return
}
}
cleanup()
resyncCh, cleanup = r.resyncChan()
}
}()
核心代码:
err := r.store.Resync()
store的具体对象为DeltaFIFO
,即调用DeltaFIFO.Resync
// Resync will send a sync event for each item
func (f *DeltaFIFO) Resync() error {
f.lock.Lock()
defer f.lock.Unlock()
if f.knownObjects == nil {
return nil
}
keys := f.knownObjects.ListKeys()
for _, k := range keys {
if err := f.syncKeyLocked(k); err != nil {
return err
}
}
return nil
}
3.4.3. Watch
for {
// give the stopCh a chance to stop the loop, even in case of continue statements further down on errors
select {
case <-stopCh:
return nil
default:
}
timemoutseconds := int64(minWatchTimeout.Seconds() * (rand.Float64() + 1.0))
options = metav1.ListOptions{
ResourceVersion: resourceVersion,
// We want to avoid situations of hanging watchers. Stop any wachers that do not
// receive any events within the timeout window.
TimeoutSeconds: &timemoutseconds,
}
r.metrics.numberOfWatches.Inc()
w, err := r.listerWatcher.Watch(options)
if err != nil {
switch err {
case io.EOF:
// watch closed normally
case io.ErrUnexpectedEOF:
glog.V(1).Infof("%s: Watch for %v closed with unexpected EOF: %v", r.name, r.expectedType, err)
default:
utilruntime.HandleError(fmt.Errorf("%s: Failed to watch %v: %v", r.name, r.expectedType, err))
}
// If this is "connection refused" error, it means that most likely apiserver is not responsive.
// It doesn't make sense to re-list all objects because most likely we will be able to restart
// watch where we ended.
// If that's the case wait and resend watch request.
if urlError, ok := err.(*url.Error); ok {
if opError, ok := urlError.Err.(*net.OpError); ok {
if errno, ok := opError.Err.(syscall.Errno); ok && errno == syscall.ECONNREFUSED {
time.Sleep(time.Second)
continue
}
}
}
return nil
}
if err := r.watchHandler(w, &resourceVersion, resyncerrc, stopCh); err != nil {
if err != errorStopRequested {
glog.Warningf("%s: watch of %v ended with: %v", r.name, r.expectedType, err)
}
return nil
}
}
设置watch的超时时间,默认为5分钟。
timemoutseconds := int64(minWatchTimeout.Seconds() * (rand.Float64() + 1.0))
options = metav1.ListOptions{
ResourceVersion: resourceVersion,
// We want to avoid situations of hanging watchers. Stop any wachers that do not
// receive any events within the timeout window.
TimeoutSeconds: &timemoutseconds,
}
执行listerWatcher.Watch(options)。
w, err := r.listerWatcher.Watch(options)
执行watchHandler。
err := r.watchHandler(w, &resourceVersion, resyncerrc, stopCh)
3.4.4. watchHandler
watchHandler主要是通过watch的方式保证当前的资源版本是最新的。
// watchHandler watches w and keeps *resourceVersion up to date.
func (r *Reflector) watchHandler(w watch.Interface, resourceVersion *string, errc chan error, stopCh <-chan struct{}) error {
start := r.clock.Now()
eventCount := 0
// Stopping the watcher should be idempotent and if we return from this function there's no way
// we're coming back in with the same watch interface.
defer w.Stop()
// update metrics
defer func() {
r.metrics.numberOfItemsInWatch.Observe(float64(eventCount))
r.metrics.watchDuration.Observe(time.Since(start).Seconds())
}()
loop:
for {
select {
case <-stopCh:
return errorStopRequested
case err := <-errc:
return err
case event, ok := <-w.ResultChan():
if !ok {
break loop
}
if event.Type == watch.Error {
return apierrs.FromObject(event.Object)
}
if e, a := r.expectedType, reflect.TypeOf(event.Object); e != nil && e != a {
utilruntime.HandleError(fmt.Errorf("%s: expected type %v, but watch event object had type %v", r.name, e, a))
continue
}
meta, err := meta.Accessor(event.Object)
if err != nil {
utilruntime.HandleError(fmt.Errorf("%s: unable to understand watch event %#v", r.name, event))
continue
}
newResourceVersion := meta.GetResourceVersion()
switch event.Type {
case watch.Added:
err := r.store.Add(event.Object)
if err != nil {
utilruntime.HandleError(fmt.Errorf("%s: unable to add watch event object (%#v) to store: %v", r.name, event.Object, err))
}
case watch.Modified:
err := r.store.Update(event.Object)
if err != nil {
utilruntime.HandleError(fmt.Errorf("%s: unable to update watch event object (%#v) to store: %v", r.name, event.Object, err))
}
case watch.Deleted:
// TODO: Will any consumers need access to the "last known
// state", which is passed in event.Object? If so, may need
// to change this.
err := r.store.Delete(event.Object)
if err != nil {
utilruntime.HandleError(fmt.Errorf("%s: unable to delete watch event object (%#v) from store: %v", r.name, event.Object, err))
}
default:
utilruntime.HandleError(fmt.Errorf("%s: unable to understand watch event %#v", r.name, event))
}
*resourceVersion = newResourceVersion
r.setLastSyncResourceVersion(newResourceVersion)
eventCount++
}
}
watchDuration := r.clock.Now().Sub(start)
if watchDuration < 1*time.Second && eventCount == 0 {
r.metrics.numberOfShortWatches.Inc()
return fmt.Errorf("very short watch: %s: Unexpected watch close - watch lasted less than a second and no items received", r.name)
}
glog.V(4).Infof("%s: Watch close - %v total %v items received", r.name, r.expectedType, eventCount)
return nil
}
获取watch接口中的事件的channel,来获取事件的内容。
for {
select {
...
case event, ok := <-w.ResultChan():
...
}
当获得添加、更新、删除的事件时,将对应的对象更新到本地缓存store中。
switch event.Type {
case watch.Added:
err := r.store.Add(event.Object)
if err != nil {
utilruntime.HandleError(fmt.Errorf("%s: unable to add watch event object (%#v) to store: %v", r.name, event.Object, err))
}
case watch.Modified:
err := r.store.Update(event.Object)
if err != nil {
utilruntime.HandleError(fmt.Errorf("%s: unable to update watch event object (%#v) to store: %v", r.name, event.Object, err))
}
case watch.Deleted:
// TODO: Will any consumers need access to the "last known
// state", which is passed in event.Object? If so, may need
// to change this.
err := r.store.Delete(event.Object)
if err != nil {
utilruntime.HandleError(fmt.Errorf("%s: unable to delete watch event object (%#v) from store: %v", r.name, event.Object, err))
}
default:
utilruntime.HandleError(fmt.Errorf("%s: unable to understand watch event %#v", r.name, event))
}
更新当前的最新版本号。
newResourceVersion := meta.GetResourceVersion()
*resourceVersion = newResourceVersion
r.setLastSyncResourceVersion(newResourceVersion)
通过对Reflector模块的分析,可以看到多次使用到本地缓存store模块,而store的数据由DeltaFIFO赋值而来,以下针对DeltaFIFO和store做分析。
4. DeltaFIFO
DeltaFIFO由NewDeltaFIFO初始化,并赋值给config.Queue。
func (s *sharedIndexInformer) Run(stopCh <-chan struct{}) {
fifo := NewDeltaFIFO(MetaNamespaceKeyFunc, nil, s.indexer)
cfg := &Config{
Queue: fifo,
...
}
...
}
4.1. NewDeltaFIFO
// NewDeltaFIFO returns a Store which can be used process changes to items.
//
// keyFunc is used to figure out what key an object should have. (It's
// exposed in the returned DeltaFIFO's KeyOf() method, with bonus features.)
//
// 'compressor' may compress as many or as few items as it wants
// (including returning an empty slice), but it should do what it
// does quickly since it is called while the queue is locked.
// 'compressor' may be nil if you don't want any delta compression.
//
// 'keyLister' is expected to return a list of keys that the consumer of
// this queue "knows about". It is used to decide which items are missing
// when Replace() is called; 'Deleted' deltas are produced for these items.
// It may be nil if you don't need to detect all deletions.
// TODO: consider merging keyLister with this object, tracking a list of
// "known" keys when Pop() is called. Have to think about how that
// affects error retrying.
// TODO(lavalamp): I believe there is a possible race only when using an
// external known object source that the above TODO would
// fix.
//
// Also see the comment on DeltaFIFO.
func NewDeltaFIFO(keyFunc KeyFunc, compressor DeltaCompressor, knownObjects KeyListerGetter) *DeltaFIFO {
f := &DeltaFIFO{
items: map[string]Deltas{},
queue: []string{},
keyFunc: keyFunc,
deltaCompressor: compressor,
knownObjects: knownObjects,
}
f.cond.L = &f.lock
return f
}
controller.Run的部分调用了NewReflector。
func (c *controller) Run(stopCh <-chan struct{}) {
...
r := NewReflector(
c.config.ListerWatcher,
c.config.ObjectType,
c.config.Queue,
c.config.FullResyncPeriod,
)
...
}
NewReflector构造函数,将c.config.Queue赋值给Reflector.store的属性。
func NewReflector(lw ListerWatcher, expectedType interface{}, store Store, resyncPeriod time.Duration) *Reflector {
return NewNamedReflector(getDefaultReflectorName(internalPackages...), lw, expectedType, store, resyncPeriod)
}
// NewNamedReflector same as NewReflector, but with a specified name for logging
func NewNamedReflector(name string, lw ListerWatcher, expectedType interface{}, store Store, resyncPeriod time.Duration) *Reflector {
reflectorSuffix := atomic.AddInt64(&reflectorDisambiguator, 1)
r := &Reflector{
name: name,
// we need this to be unique per process (some names are still the same)but obvious who it belongs to
metrics: newReflectorMetrics(makeValidPromethusMetricLabel(fmt.Sprintf("reflector_"+name+"_%d", reflectorSuffix))),
listerWatcher: lw,
store: store,
expectedType: reflect.TypeOf(expectedType),
period: time.Second,
resyncPeriod: resyncPeriod,
clock: &clock.RealClock{},
}
return r
}
4.2. DeltaFIFO
DeltaFIFO是一个生产者与消费者的队列,其中Reflector是生产者,消费者调用Pop()的方法。
DeltaFIFO主要用在以下场景:
- 希望对象变更最多处理一次
- 处理对象时,希望查看自上次处理对象以来发生的所有事情
- 要处理对象的删除
- 希望定期重新处理对象
// DeltaFIFO is like FIFO, but allows you to process deletes.
//
// DeltaFIFO is a producer-consumer queue, where a Reflector is
// intended to be the producer, and the consumer is whatever calls
// the Pop() method.
//
// DeltaFIFO solves this use case:
// * You want to process every object change (delta) at most once.
// * When you process an object, you want to see everything
// that's happened to it since you last processed it.
// * You want to process the deletion of objects.
// * You might want to periodically reprocess objects.
//
// DeltaFIFO's Pop(), Get(), and GetByKey() methods return
// interface{} to satisfy the Store/Queue interfaces, but it
// will always return an object of type Deltas.
//
// A note on threading: If you call Pop() in parallel from multiple
// threads, you could end up with multiple threads processing slightly
// different versions of the same object.
//
// A note on the KeyLister used by the DeltaFIFO: It's main purpose is
// to list keys that are "known", for the purpose of figuring out which
// items have been deleted when Replace() or Delete() are called. The deleted
// object will be included in the DeleteFinalStateUnknown markers. These objects
// could be stale.
//
// You may provide a function to compress deltas (e.g., represent a
// series of Updates as a single Update).
type DeltaFIFO struct {
// lock/cond protects access to 'items' and 'queue'.
lock sync.RWMutex
cond sync.Cond
// We depend on the property that items in the set are in
// the queue and vice versa, and that all Deltas in this
// map have at least one Delta.
items map[string]Deltas
queue []string
// populated is true if the first batch of items inserted by Replace() has been populated
// or Delete/Add/Update was called first.
populated bool
// initialPopulationCount is the number of items inserted by the first call of Replace()
initialPopulationCount int
// keyFunc is used to make the key used for queued item
// insertion and retrieval, and should be deterministic.
keyFunc KeyFunc
// deltaCompressor tells us how to combine two or more
// deltas. It may be nil.
deltaCompressor DeltaCompressor
// knownObjects list keys that are "known", for the
// purpose of figuring out which items have been deleted
// when Replace() or Delete() is called.
knownObjects KeyListerGetter
// Indication the queue is closed.
// Used to indicate a queue is closed so a control loop can exit when a queue is empty.
// Currently, not used to gate any of CRED operations.
closed bool
closedLock sync.Mutex
}
4.3. Queue & Store
DeltaFIFO的类型是Queue接口,Reflector.store是Store接口,Queue接口是一个存储队列,Process的方法执行Queue.Pop出来的数据对象,
// Queue is exactly like a Store, but has a Pop() method too.
type Queue interface {
Store
// Pop blocks until it has something to process.
// It returns the object that was process and the result of processing.
// The PopProcessFunc may return an ErrRequeue{...} to indicate the item
// should be requeued before releasing the lock on the queue.
Pop(PopProcessFunc) (interface{}, error)
// AddIfNotPresent adds a value previously
// returned by Pop back into the queue as long
// as nothing else (presumably more recent)
// has since been added.
AddIfNotPresent(interface{}) error
// Return true if the first batch of items has been popped
HasSynced() bool
// Close queue
Close()
}
5. store
Store
是一个通用的存储接口,Reflector通过watch server的方式更新数据到store中,store给Reflector提供本地的缓存,让Reflector可以像消息队列一样的工作。
Store
实现的是一种可以准确的写入对象和获取对象的机制。
// Store is a generic object storage interface. Reflector knows how to watch a server
// and update a store. A generic store is provided, which allows Reflector to be used
// as a local caching system, and an LRU store, which allows Reflector to work like a
// queue of items yet to be processed.
//
// Store makes no assumptions about stored object identity; it is the responsibility
// of a Store implementation to provide a mechanism to correctly key objects and to
// define the contract for obtaining objects by some arbitrary key type.
type Store interface {
Add(obj interface{}) error
Update(obj interface{}) error
Delete(obj interface{}) error
List() []interface{}
ListKeys() []string
Get(obj interface{}) (item interface{}, exists bool, err error)
GetByKey(key string) (item interface{}, exists bool, err error)
// Replace will delete the contents of the store, using instead the
// given list. Store takes ownership of the list, you should not reference
// it after calling this function.
Replace([]interface{}, string) error
Resync() error
}
其中Replace
方法会删除原来store中的内容,并将新增的list的内容存入store中,即完全替换数据。
6.1. cache
cache实现了store的接口,而cache的具体实现又是调用ThreadSafeStore
接口来实现功能的。
cache的功能主要有以下两点:
- 通过keyFunc计算对象的key
- 调用ThreadSafeStorage接口的方法
// cache responsibilities are limited to:
// 1. Computing keys for objects via keyFunc
// 2. Invoking methods of a ThreadSafeStorage interface
type cache struct {
// cacheStorage bears the burden of thread safety for the cache
cacheStorage ThreadSafeStore
// keyFunc is used to make the key for objects stored in and retrieved from items, and
// should be deterministic.
keyFunc KeyFunc
}
其中ListAndWatch主要用到以下的方法:
cache.Replace
// Replace will delete the contents of 'c', using instead the given list.
// 'c' takes ownership of the list, you should not reference the list again
// after calling this function.
func (c *cache) Replace(list []interface{}, resourceVersion string) error {
items := map[string]interface{}{}
for _, item := range list {
key, err := c.keyFunc(item)
if err != nil {
return KeyError{item, err}
}
items[key] = item
}
c.cacheStorage.Replace(items, resourceVersion)
return nil
}
cache.Add
// Add inserts an item into the cache.
func (c *cache) Add(obj interface{}) error {
key, err := c.keyFunc(obj)
if err != nil {
return KeyError{obj, err}
}
c.cacheStorage.Add(key, obj)
return nil
}
cache.Update
// Update sets an item in the cache to its updated state.
func (c *cache) Update(obj interface{}) error {
key, err := c.keyFunc(obj)
if err != nil {
return KeyError{obj, err}
}
c.cacheStorage.Update(key, obj)
return nil
}
cache.Delete
// Delete removes an item from the cache.
func (c *cache) Delete(obj interface{}) error {
key, err := c.keyFunc(obj)
if err != nil {
return KeyError{obj, err}
}
c.cacheStorage.Delete(key)
return nil
}
6.2. ThreadSafeStore
cache的具体是调用ThreadSafeStore
来实现的。
// ThreadSafeStore is an interface that allows concurrent access to a storage backend.
// TL;DR caveats: you must not modify anything returned by Get or List as it will break
// the indexing feature in addition to not being thread safe.
//
// The guarantees of thread safety provided by List/Get are only valid if the caller
// treats returned items as read-only. For example, a pointer inserted in the store
// through `Add` will be returned as is by `Get`. Multiple clients might invoke `Get`
// on the same key and modify the pointer in a non-thread-safe way. Also note that
// modifying objects stored by the indexers (if any) will *not* automatically lead
// to a re-index. So it's not a good idea to directly modify the objects returned by
// Get/List, in general.
type ThreadSafeStore interface {
Add(key string, obj interface{})
Update(key string, obj interface{})
Delete(key string)
Get(key string) (item interface{}, exists bool)
List() []interface{}
ListKeys() []string
Replace(map[string]interface{}, string)
Index(indexName string, obj interface{}) ([]interface{}, error)
IndexKeys(indexName, indexKey string) ([]string, error)
ListIndexFuncValues(name string) []string
ByIndex(indexName, indexKey string) ([]interface{}, error)
GetIndexers() Indexers
// AddIndexers adds more indexers to this store. If you call this after you already have data
// in the store, the results are undefined.
AddIndexers(newIndexers Indexers) error
Resync() error
}
threadSafeMap
// threadSafeMap implements ThreadSafeStore
type threadSafeMap struct {
lock sync.RWMutex
items map[string]interface{}
// indexers maps a name to an IndexFunc
indexers Indexers
// indices maps a name to an Index
indices Indices
}
6. processLoop
func (c *controller) Run(stopCh <-chan struct{}) {
...
wait.Until(c.processLoop, time.Second, stopCh)
}
在controller.Run方法中会调用processLoop,以下分析processLoop
的处理逻辑。
// processLoop drains the work queue.
// TODO: Consider doing the processing in parallel. This will require a little thought
// to make sure that we don't end up processing the same object multiple times
// concurrently.
//
// TODO: Plumb through the stopCh here (and down to the queue) so that this can
// actually exit when the controller is stopped. Or just give up on this stuff
// ever being stoppable. Converting this whole package to use Context would
// also be helpful.
func (c *controller) processLoop() {
for {
obj, err := c.config.Queue.Pop(PopProcessFunc(c.config.Process))
if err != nil {
if err == FIFOClosedError {
return
}
if c.config.RetryOnError {
// This is the safe way to re-enqueue.
c.config.Queue.AddIfNotPresent(obj)
}
}
}
}
processLoop主要处理任务队列中的任务,其中处理逻辑是调用具体的ProcessFunc
函数来实现,核心代码为:
obj, err := c.config.Queue.Pop(PopProcessFunc(c.config.Process))
5.1. DeltaFIFO.Pop
Pop会阻塞住直到队列里面添加了新的对象,如果有多个对象,按照先进先出的原则处理,如果某个对象没有处理成功会重新被加入该队列中。
Pop中会调用具体的process函数来处理对象。
// Pop blocks until an item is added to the queue, and then returns it. If
// multiple items are ready, they are returned in the order in which they were
// added/updated. The item is removed from the queue (and the store) before it
// is returned, so if you don't successfully process it, you need to add it back
// with AddIfNotPresent().
// process function is called under lock, so it is safe update data structures
// in it that need to be in sync with the queue (e.g. knownKeys). The PopProcessFunc
// may return an instance of ErrRequeue with a nested error to indicate the current
// item should be requeued (equivalent to calling AddIfNotPresent under the lock).
//
// Pop returns a 'Deltas', which has a complete list of all the things
// that happened to the object (deltas) while it was sitting in the queue.
func (f *DeltaFIFO) Pop(process PopProcessFunc) (interface{}, error) {
f.lock.Lock()
defer f.lock.Unlock()
for {
for len(f.queue) == 0 {
// When the queue is empty, invocation of Pop() is blocked until new item is enqueued.
// When Close() is called, the f.closed is set and the condition is broadcasted.
// Which causes this loop to continue and return from the Pop().
if f.IsClosed() {
return nil, FIFOClosedError
}
f.cond.Wait()
}
id := f.queue[0]
f.queue = f.queue[1:]
item, ok := f.items[id]
if f.initialPopulationCount > 0 {
f.initialPopulationCount--
}
if !ok {
// Item may have been deleted subsequently.
continue
}
delete(f.items, id)
err := process(item)
if e, ok := err.(ErrRequeue); ok {
f.addIfNotPresent(id, item)
err = e.Err
}
// Don't need to copyDeltas here, because we're transferring
// ownership to the caller.
return item, err
}
}
核心代码:
for {
...
item, ok := f.items[id]
...
err := process(item)
if e, ok := err.(ErrRequeue); ok {
f.addIfNotPresent(id, item)
err = e.Err
}
// Don't need to copyDeltas here, because we're transferring
// ownership to the caller.
return item, err
}
5.2. HandleDeltas
cfg := &Config{
Queue: fifo,
ListerWatcher: s.listerWatcher,
ObjectType: s.objectType,
FullResyncPeriod: s.resyncCheckPeriod,
RetryOnError: false,
ShouldResync: s.processor.shouldResync,
Process: s.HandleDeltas,
}
其中process函数就是在sharedIndexInformer.Run方法中,给config.Process赋值的HandleDeltas
函数。
func (s *sharedIndexInformer) HandleDeltas(obj interface{}) error {
s.blockDeltas.Lock()
defer s.blockDeltas.Unlock()
// from oldest to newest
for _, d := range obj.(Deltas) {
switch d.Type {
case Sync, Added, Updated:
isSync := d.Type == Sync
s.cacheMutationDetector.AddObject(d.Object)
if old, exists, err := s.indexer.Get(d.Object); err == nil && exists {
if err := s.indexer.Update(d.Object); err != nil {
return err
}
s.processor.distribute(updateNotification{oldObj: old, newObj: d.Object}, isSync)
} else {
if err := s.indexer.Add(d.Object); err != nil {
return err
}
s.processor.distribute(addNotification{newObj: d.Object}, isSync)
}
case Deleted:
if err := s.indexer.Delete(d.Object); err != nil {
return err
}
s.processor.distribute(deleteNotification{oldObj: d.Object}, false)
}
}
return nil
}
核心代码:
switch d.Type {
case Sync, Added, Updated:
...
if old, exists, err := s.indexer.Get(d.Object); err == nil && exists {
...
s.processor.distribute(updateNotification{oldObj: old, newObj: d.Object}, isSync)
} else {
...
s.processor.distribute(addNotification{newObj: d.Object}, isSync)
}
case Deleted:
...
s.processor.distribute(deleteNotification{oldObj: d.Object}, false)
}
根据不同的类型,调用processor.distribute
方法,该方法将对象加入processorListener
的channel中。
5.3. sharedProcessor.distribute
func (p *sharedProcessor) distribute(obj interface{}, sync bool) {
p.listenersLock.RLock()
defer p.listenersLock.RUnlock()
if sync {
for _, listener := range p.syncingListeners {
listener.add(obj)
}
} else {
for _, listener := range p.listeners {
listener.add(obj)
}
}
}
processorListener.add:
func (p *processorListener) add(notification interface{}) {
p.addCh <- notification
}
综合以上的分析,可以看出processLoop通过调用HandleDeltas,再调用distribute,processorListener.add最终将不同更新类型的对象加入processorListener
的channel中,供processorListener.Run使用。以下分析processorListener.Run的部分。
7. processor
processor的主要功能就是记录了所有的回调函数实例(即 ResourceEventHandler 实例),并负责触发这些函数。在sharedIndexInformer.Run部分会调用processor.run。
流程:
- listenser的add函数负责将notify装进pendingNotifications。
- pop函数取出pendingNotifications的第一个nofify,输出到nextCh channel。
- run函数则负责取出notify,然后根据notify的类型(增加、删除、更新)触发相应的处理函数,这些函数是在不同的
NewXxxcontroller
实现中注册的。
func (s *sharedIndexInformer) Run(stopCh <-chan struct{}) {
...
wg.StartWithChannel(processorStopCh, s.processor.run)
...
}
7.1. sharedProcessor.Run
func (p *sharedProcessor) run(stopCh <-chan struct{}) {
func() {
p.listenersLock.RLock()
defer p.listenersLock.RUnlock()
for _, listener := range p.listeners {
p.wg.Start(listener.run)
p.wg.Start(listener.pop)
}
}()
<-stopCh
p.listenersLock.RLock()
defer p.listenersLock.RUnlock()
for _, listener := range p.listeners {
close(listener.addCh) // Tell .pop() to stop. .pop() will tell .run() to stop
}
p.wg.Wait() // Wait for all .pop() and .run() to stop
}
7.1.1. listener.pop
pop函数取出pendingNotifications的第一个nofify,输出到nextCh channel。
func (p *processorListener) pop() {
defer utilruntime.HandleCrash()
defer close(p.nextCh) // Tell .run() to stop
var nextCh chan<- interface{}
var notification interface{}
for {
select {
case nextCh <- notification:
// Notification dispatched
var ok bool
notification, ok = p.pendingNotifications.ReadOne()
if !ok { // Nothing to pop
nextCh = nil // Disable this select case
}
case notificationToAdd, ok := <-p.addCh:
if !ok {
return
}
if notification == nil { // No notification to pop (and pendingNotifications is empty)
// Optimize the case - skip adding to pendingNotifications
notification = notificationToAdd
nextCh = p.nextCh
} else { // There is already a notification waiting to be dispatched
p.pendingNotifications.WriteOne(notificationToAdd)
}
}
}
}
7.1.2. listener.run
listener.run部分根据不同的更新类型调用不同的处理函数。
func (p *processorListener) run() {
defer utilruntime.HandleCrash()
for next := range p.nextCh {
switch notification := next.(type) {
case updateNotification:
p.handler.OnUpdate(notification.oldObj, notification.newObj)
case addNotification:
p.handler.OnAdd(notification.newObj)
case deleteNotification:
p.handler.OnDelete(notification.oldObj)
default:
utilruntime.HandleError(fmt.Errorf("unrecognized notification: %#v", next))
}
}
}
其中具体的实现函数handler是在NewDeploymentController(其他不同类型的controller类似)中赋值的,而该handler是一个接口,具体如下:
// ResourceEventHandler can handle notifications for events that happen to a
// resource. The events are informational only, so you can't return an
// error.
// * OnAdd is called when an object is added.
// * OnUpdate is called when an object is modified. Note that oldObj is the
// last known state of the object-- it is possible that several changes
// were combined together, so you can't use this to see every single
// change. OnUpdate is also called when a re-list happens, and it will
// get called even if nothing changed. This is useful for periodically
// evaluating or syncing something.
// * OnDelete will get the final state of the item if it is known, otherwise
// it will get an object of type DeletedFinalStateUnknown. This can
// happen if the watch is closed and misses the delete event and we don't
// notice the deletion until the subsequent re-list.
type ResourceEventHandler interface {
OnAdd(obj interface{})
OnUpdate(oldObj, newObj interface{})
OnDelete(obj interface{})
}
7.2. ResourceEventHandler
以下以DeploymentController的处理逻辑为例。
在NewDeploymentController
部分会注册deployment的事件函数,以下注册了三种类型的事件函数,其中包括:dInformer、rsInformer和podInformer。
// NewDeploymentController creates a new DeploymentController.
func NewDeploymentController(dInformer extensionsinformers.DeploymentInformer, rsInformer extensionsinformers.ReplicaSetInformer, podInformer coreinformers.PodInformer, client clientset.Interface) (*DeploymentController, error) {
...
dInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
AddFunc: dc.addDeployment,
UpdateFunc: dc.updateDeployment,
// This will enter the sync loop and no-op, because the deployment has been deleted from the store.
DeleteFunc: dc.deleteDeployment,
})
rsInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
AddFunc: dc.addReplicaSet,
UpdateFunc: dc.updateReplicaSet,
DeleteFunc: dc.deleteReplicaSet,
})
podInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
DeleteFunc: dc.deletePod,
})
...
}
7.2.1. addDeployment
以下以addDeployment
为例,addDeployment主要是将对象加入到enqueueDeployment的队列中。
func (dc *DeploymentController) addDeployment(obj interface{}) {
d := obj.(*extensions.Deployment)
glog.V(4).Infof("Adding deployment %s", d.Name)
dc.enqueueDeployment(d)
}
enqueueDeployment的定义
type DeploymentController struct {
...
enqueueDeployment func(deployment *extensions.Deployment)
...
}
将dc.enqueue赋值给dc.enqueueDeployment
dc.enqueueDeployment = dc.enqueue
dc.enqueue调用了dc.queue.Add(key)
func (dc *DeploymentController) enqueue(deployment *extensions.Deployment) {
key, err := controller.KeyFunc(deployment)
if err != nil {
utilruntime.HandleError(fmt.Errorf("Couldn't get key for object %#v: %v", deployment, err))
return
}
dc.queue.Add(key)
}
dc.queue主要记录了需要被同步的deployment的对象,供syncDeployment使用。
dc := &DeploymentController{
...
queue: workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), "deployment"),
}
NewNamedRateLimitingQueue
func NewNamedRateLimitingQueue(rateLimiter RateLimiter, name string) RateLimitingInterface {
return &rateLimitingType{
DelayingInterface: NewNamedDelayingQueue(name),
rateLimiter: rateLimiter,
}
}
通过以上分析,可以看出processor记录了不同类似的事件函数,其中事件函数在NewXxxController构造函数部分注册,具体事件函数的处理,一般是将需要处理的对象加入对应的controller的任务队列中,然后由类似syncDeployment的同步函数来维持期望状态的同步逻辑。
8. 总结
本文分析的部分主要是k8s的informer
机制,即List-Watch
机制。
8.1. Reflector
Reflector
的主要作用是watch指定的k8s资源,并将变化同步到本地是store
中。Reflector
只会放置指定的expectedType
类型的资源到store
中,除非expectedType
为nil。如果resyncPeriod
不为零,那么Reflector
为以resyncPeriod
为周期定期执行list的操作,这样就可以使用Reflector
来定期处理所有的对象,也可以逐步处理变化的对象。
8.2. ListAndWatch
ListAndWatch
第一次会列出所有的对象,并获取资源对象的版本号,然后watch资源对象的版本号来查看是否有被变更。首先会将资源版本号设置为0,list()
可能会导致本地的缓存相对于etcd里面的内容存在延迟,Reflector
会通过watch
的方法将延迟的部分补充上,使得本地的缓存数据与etcd的数据保持一致。
8.3. DeltaFIFO
DeltaFIFO
是一个生产者与消费者的队列,其中Reflector是生产者,消费者调用Pop()的方法。
DeltaFIFO主要用在以下场景:
- 希望对象变更最多处理一次
- 处理对象时,希望查看自上次处理对象以来发生的所有事情
- 要处理对象的删除
- 希望定期重新处理对象
8.4. store
Store
是一个通用的存储接口,Reflector通过watch server的方式更新数据到store中,store给Reflector提供本地的缓存,让Reflector可以像消息队列一样的工作。
Store
实现的是一种可以准确的写入对象和获取对象的机制。
8.5. processor
processor
的主要功能就是记录了所有的回调函数实例(即 ResourceEventHandler 实例),并负责触发这些函数。在sharedIndexInformer.Run部分会调用processor.run。
流程:
- listenser的add函数负责将notify装进pendingNotifications。
- pop函数取出pendingNotifications的第一个nofify,输出到nextCh channel。
- run函数则负责取出notify,然后根据notify的类型(增加、删除、更新)触发相应的处理函数,这些函数是在不同的
NewXxxcontroller
实现中注册的。
processor
记录了不同类似的事件函数,其中事件函数在NewXxxController
构造函数部分注册,具体事件函数的处理,一般是将需要处理的对象加入对应的controller的任务队列中,然后由类似syncDeployment
的同步函数来维持期望状态的同步逻辑。
8.6. 主要步骤
- 在controller-manager的Run函数部分调用了InformerFactory.Start的方法,Start方法初始化各种类型的informer,并且每个类型起了个informer.Run的goroutine。
- informer.Run的部分先生成一个DeltaFIFO的队列来存储对象变化的数据。然后调用processor.Run和controller.Run函数。
- controller.Run函数会生成一个Reflector,
Reflector
的主要作用是watch指定的k8s资源,并将变化同步到本地是store
中。Reflector
以resyncPeriod
为周期定期执行list的操作,这样就可以使用Reflector
来定期处理所有的对象,也可以逐步处理变化的对象。 - Reflector接着执行ListAndWatch函数,ListAndWatch第一次会列出所有的对象,并获取资源对象的版本号,然后watch资源对象的版本号来查看是否有被变更。首先会将资源版本号设置为0,
list()
可能会导致本地的缓存相对于etcd里面的内容存在延迟,Reflector
会通过watch
的方法将延迟的部分补充上,使得本地的缓存数据与etcd的数据保持一致。 - controller.Run函数还会调用processLoop函数,processLoop通过调用HandleDeltas,再调用distribute,processorListener.add最终将不同更新类型的对象加入
processorListener
的channel中,供processorListener.Run使用。 - processor的主要功能就是记录了所有的回调函数实例(即 ResourceEventHandler 实例),并负责触发这些函数。processor记录了不同类型的事件函数,其中事件函数在NewXxxController构造函数部分注册,具体事件函数的处理,一般是将需要处理的对象加入对应的controller的任务队列中,然后由类似syncDeployment的同步函数来维持期望状态的同步逻辑。
参考文章:
-
https://github.com/kubernetes/client-go/tree/master/tools/cache
-
https://github.com/kubernetes/sample-controller/blob/master/docs/controller-client-go.md
-
https://github.com/kubernetes/client-go/blob/master/examples/workqueue/main.go
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.